O que é o Teorema de Tales?

O que é o Teorema de Tales? Esse teorema garante a proporcionalidade entre segmentos de retas formados em um feixe de retas paralelas.

Imprimir
A+
A-
Escutar texto
Compartilhar
Facebook
X
WhatsApp
Play
Ouça o texto abaixo!
1x

Teorema de Tales é como ficou conhecida a propriedade matemática que relaciona as medidas dos segmentos de reta formados por um feixe de retas paralelas cortado por retas transversais. Antes de falar do teorema em si, é bom lembrar o conceito de feixe de retas paralelas, retas transversais e uma de suas propriedades:

Não pare agora... Tem mais depois da publicidade ;)

Duas ou mais retas são paralelas quando elas não possuem nenhum ponto em comum. Quando destacamos três ou mais retas paralelas em um plano, dizemos que elas formam um feixe de retas paralelas. As retas transversais são aquelas que “cortam” as retas paralelas.

Suponha que um feixe de retas paralelas forme segmentos de reta congruentes sobre uma reta transversal qualquer. Nessa hipótese, ele também forma segmentos congruentes em qualquer outra reta transversal.

A imagem a seguir mostra um feixe de retas paralelas, duas retas transversais e as medidas dos segmentos de reta formados por elas.

Teorema de Tales

Os segmentos de reta formados sobre retas transversais a um feixe de retas paralelas são proporcionais.

Isso significa que é possível que as divisões entre os comprimentos de alguns segmentos formados nessas circunstâncias tenham o mesmo resultado.

Para compreender melhor o teorema enunciado, observe a imagem a seguir:

O que o teorema de Tales garante a respeito dos segmentos formados sobre as retas transversais é a seguinte igualdade:

JK = ON
KL   NM

Note que a divisão foi feita, nesse caso, de cima para baixo. Os segmentos superiores nas retas transversais aparecem no numerador. O teorema também garante outras possibilidades. Veja:

 KL = NM
JK    ON

Outras variações podem ser obtidas pela troca das razões de membro ou pela aplicação da propriedade fundamental das proporções (o produto dos meios é igual ao produto dos extremos).

Outras possibilidades de proporcionalidade pelo teorema de tales são:

 JK = KL
ON   NM

ON = NM
JK     KL

JK = ON
JL    OM

KL = NM
JL    OM

Tanto esse teorema quanto essa propriedade são usados para descobrir a medida de um dos segmentos quando se conhece a medida dos outros três ou quando se conhece a razão de proporcionalidade entre dois segmentos. O mais importante para resolver exercícios que envolvem o teorema de Tales é respeitar a ordem em que os segmentos de reta são colocados nas frações.

Exemplos:

  • No feixe de retas paralelas a seguir, vamos determinar a medida do segmento NM.

Solução:

Seja x o comprimento do segmento NM, vamos mostrar a proporcionalidade entre os segmentos e utilizar a propriedade fundamental das proporções para resolver a equação:

2 = 4
8    x

2x = 32

x = 32
      2

x = 16 cm.

Note que 8 = 2·4 e que 16 também é igual a 2·4. Isso acontece porque, na configuração utilizada, a razão de proporcionalidade é 1/4. Note também que qualquer uma das razões expostas acima poderia ter sido utilizada para resolver esse problema e o resultado seria o mesmo.

  • A partir da imagem a seguir, vamos calcular a medida do segmento JK.

Solução:

Vamos escolher uma das razões descritas no teorema de Tales, substituir os valores dados no exercício e utilizar a propriedade fundamental das proporções, ou seja:

4x – 20 = 20
6x + 30 = 40

40(4x – 20) = 20(6x + 30)

160x – 800 = 120x + 600

160x – 120x = 600 + 800

40x = 1400

x = 1400
     40

x = 35

Para descobrir o comprimento de JK, temos que resolver a seguinte expressão:

JK = 4x – 20

JK = 4·35 – 20

JK = 140 – 20

JK = 120


Por Luiz Paulo Moreira
Graduado em Matemática

O teorema de Tales garante uma relação entre os segmentos de reta formados em um feixe de retas paralelas
O teorema de Tales garante uma relação entre os segmentos de reta formados em um feixe de retas paralelas
Escritor do artigo
Escrito por: Luiz Paulo Moreira Silva Escritor oficial Brasil Escola
Deseja fazer uma citação?
SILVA, Luiz Paulo Moreira. "O que é o Teorema de Tales?"; Brasil Escola. Disponível em: /o-que-e/matematica/o-que-e-teorema-tales.htm. o em 23 de maio de 2025.
Copiar

Videoaulas


Artigos Relacionados


O que são grandezas direta e inversamente proporcionais?

Para entender o que tornam grandezas direta ou inversamente proporcionais, é necessário observar as variações apresentadas por cada uma delas.

O que são números reais?

O que são números reais? São números pertencentes a um conjunto numérico formado pela união de outros dois conjuntos: Racionais e Irracionais.

O que são polígonos convexos e regulares?

O que são polígonos convexos e regulares? Essa categorização baseia-se no formato e medidas de lados e ângulos.

O que são posições relativas?

Para entender o que são posições relativas, deve-se saber que se relacionam com o número de interações entre duas figuras geométricas que ocupam o mesmo lugar no espaço.

O que são seno, cosseno e tangente?

O que são seno, cosseno e tangente? Essas divisões entre lados de um triângulo retângulo são usadas para relacionar medidas de lados e ângulos desse polígono.

O que é a condição de existência de um triângulo?

O que é a condição de existência de um triângulo? É um conjunto de desigualdades pelo qual é possível decidir se um triângulo pode ou não existir.

O que é geometria?

O que é geometria? É o estudo das formas presentes na natureza e das propriedades que essas formas possuem.

O que é losango?

O que é losango? Trata-se de uma figura geométrica que possui quatro lados iguais e, como consequência, seus lados opostos são paralelos.

O que é plano?

O que é plano? Trata-se de uma noção geométrica para a qual não existe definição, apenas a ideia de uma superfície que não descreve curva alguma.

O que é polígono?

Para entender o que é polígono, deve-se saber que essa figura é uma linha fechada inteiramente formada por segmentos de reta que não se cruzam, exceto em suas extremidades.

Teorema de Tales

O Teorema de Tales é usado para a melhor compreensão da proporcionalidade.

Exercícios sobre teorema de Tales

Estes exercícios testarão seus conhecimentos sobre o teorema de Tales, que demonstra proporcionalidade entre certos segmentos de retas.