Se utilizarmos um voltímetro em uma pilha, conseguiremos identificar a diferença de potencial (U ou ddp) ou força eletromotriz (fem ou E) entre os dois eletrodos. No entanto, não é possível identificar dessa forma os potenciais de redução ou oxidação de cada eletrodo.
Não pare agora... Tem mais depois da publicidade ;)
Os cientistas precisavam conhecer esses valores para estudar os processos de oxirredução, assim estabeleceram um estado de referência. Isso significa que se convencionou medir o potencial de cada eletrodo em relação a um outro eletrodo nas seguintes condições-padrão:
• A temperatura deve estar em 25°C;
• A pressão em 1,0 atm;
• A concentração da solução em que o metal está mergulhado deve ser de 1,0 mol/L.
Assim, o eletrodo escolhido foi o eletrodo de hidrogênio, que está representado abaixo:

Este eletrodo é composto de um fio de platina ligado a uma placa de platina, que não participa da reação, dentro de um tubo contendo gás hidrogênio e mergulhado em uma solução ácida. No exemplo, a solução foi de ácido sulfúrico.
Por convenção, foi atribuído ao eletrodo padrão de hidrogênio o valor zero, tanto para o E0red como para o E0oxi. |
Desse modo, para descobrir o valor do potencial de qualquer outro eletrodo é só construir uma pilha do eletrodo que queremos com o eletrodo-padrão de hidrogênio e medirmos a ddp com um voltímetro. O valor apresentado no voltímetro será o próprio potencial do eletrodo procurado, visto que o do hidrogênio é igual a zero.
Por exemplo, interligamos um eletrodo de zinco com o eletrodo de hidrogênio para descobrir qual é seu potencial de redução:

Segundo o esquema acima, o voltímetro identificou a diferença de potencial como sendo igual a +0,76 9(?E0 = +0,76). Observamos também que o eletrodo de zinco oxidou, portanto ele é o ânodo; e o eletrodo de hidrogênio reduziu, sendo o cátodo.
Assim, temos:
?E0 = E0red (cátodo) - E0 red (ânodo)
0,76 = 0,00 - E0 red (Zn)
E0 red (Zn) = 0,00-0,76
E0 red (Zn) = -0,76
O valor negativo significa que a corrente de elétrons flui do eletrodo de zinco (ânodo) para o de hidrogênio, comportando-se, então, como cátodo. Se desse positivo, seria o contrário, e o eletrodo de hidrogênio se comportaria como ânodo. Isso pode ser observado ao interligarmos um eletrodo de cobre com o eletrodo-padrão de hidrogênio:

?E0 = E0red (cátodo) - E0 red (ânodo)
-0,34 = 0,00 - E0 red (Zn)
E0 red (Zn) = 0,00+0,34
E0 red (Zn) = +0,34
Desse modo, é possível definir os potenciais de redução e oxidação para as mais variadas espécies químicas. No entanto, a União Internacional da Química Pura e Aplicada (IUPAC) recomenda o uso apenas dos potenciais de redução. E, independentemente do metal utilizado, na representação da pilha, o eletrodo de hidrogênio sempre vem primeiro, por exemplo:
Pt – H2 (g) 1atm / H3O1+ (aq) 1 mol/L // Cu2+ (aq) 1 mol/L / Cu
Abaixo são relacionados na tabela os potenciais conseguidos por meio desse método de utilização do eletrodo-padrão de hidrogênio, juntamente com suas respectivas semirreações:

Por Jennifer Fogaça
Graduada em Química
Equipe Brasil Escola